MORPHOLOGICAL STUDIES ON FAMILY PHORMIDIACEAE

LAKHAN LAL KUSHWAHA^{1a} AND G. L. TIWARI^b

^aDepartment of Botany, Sitaram Samarpan Mahavidhyalaya, Naraini Banda, India ^bDepartment of Botany, University of Allahabad, Allahabad, Uttar Pradesh, India

ABSTRACT

In present study most of the algal sample of blue-green algae were isolated from various habitats included Marble pond, shells and on mud of Mandakini river, Epiphytic on submerged grass, drain, wall of an old building, low land rice field and fresh water from five districts viz. Allahabad, Banda, Fatehpur, Kaushambi and Chitrakoot of U.P. After a thorough scrutiny sample only 7 genera 16 species were selected for study.

KEYWORDS: Oscillatoriales, Arthrospira, Planktothrix, Pseudophormidium, Phormidium, Porphyrosiphon

Blue-green algae or cyanobacteria are one of the important groups of algae in tropical region of the word. Blue-green algae are prokaryotic micro-organism with oxygen evolving photosystem and they are known to have bestowed a plant characteristic chloroplast to heterotrophic eukaryotic cells by the process called endosymbiosis.

The morphology of non-heterocystous filamentous bluegreen algae is much variable under different environmental conditions. The studies based on materials directly collected from nature could not give an accurate knowledge about any alga due to phenomenon of polymorphism. Culture studies are best substitute for this in which the algal materials are grown under standard laboratory conditions. In the present study sixteen species of Oscillatoriales belonging to seven genera of one family and two subfamilies are taken under study.

MATERIALS AND METHODS

Non-heterocystous filamentous blue-green algal samples (total 16) were collected from different geographical localities in different seasons from various habitats from five districts of U.P. After a thorough scrutiny sample only 16 were selected for further study.Macro observation like growth pattern on solid dish has been taken with the help of Nikon Coolpix 8400 digital camera and Micro observations like photomicrographs were made with the help of Leica DMLB microscope and DC 300 camera with Quin imaging system. All the growth stages were recorded upto drying of culture and it took more than a year.

The photographs of different localities were also taken with the help of Nikon Coolpix 8400 camera and other necessary information about habitat, locality and date was also noted in the field diary. The collected field samples were examined under the microscope immediately on arrival in the Phycology Lab, Department of Botany, University of Allahabad to evaluate the composition of Cyanobacterial strains. The isolation of non-heterocystous filamentous form was carried out by dilution and pour plate method (Kaushik, 1987). Cyanobacterial strains were streaked in BG-11 solid media. After appearance of growth, colonies were picked up and examined with the help of microscope. The axenic cultures were maintained in liquid as well as in solid BG-11 medium (Hughes etal., 1958, Stanier et al., 1971, Rippka et al., 1979) and Spirulina medium (Zarrouk, 1966) for further studies.

Non-heterocystous filamentous taxa were studied by examining their morphological characters and identification was confirmed by cross-checking with the authentic illustration and description of related Papers, Monographs and Manuals of Tilden (1910), Geitler (1932), Tiffany and Britton (1952), Desikachary (1959), Starmach (1966), Baker and Bold (1970) Drouet's (1968), Boone & Castenholz (2001) and Anagnostidis & Komarek (1988, 2005).

RESULTS AND DISCUSSION

Result show in table 1 and figure 1 - 15. Deals with the morphological studies on family *Phormidiaceae* where 7 genera were recorded. This family is classified into two subfamilies i.e. *Phormidioideae* and Microcoleoideae. Five genera belonging to *Phormidioideae* which include *Arthrospira*, *Planktothrix*, *Pseudophormidium*, *Phormidium*, *Porphyrosiphon* Two species of *Arthrospirawere* recorded which include *A. jenneri* and *A.*

maxima. Both species have been found mainly in saline water habitats and in culture grow only in Spirulina solid and liquid medium and are distinguished to each other on the basis of its identical characters. Thallus of A. jenneri is thin, mucilaginous, irregularly spreaded growth, broken margin, coiling of trichomes over on solid agar plate. Trichomes long, loosely screw like coiled sometimes spiral rarely straight, terminal end circular. Reproduction occur by fragmentation of trichomes with the help of necridia while thallus of A. maxima is thin, less mucilaginous, expanded, scattered, growth radiate uniformly from centre to the periphery forms discrete colonies over on solid agar surface. Trichomes very loosely screw like coiled, mostly straight rarely spiral, terminal end slightly attenuated, slow motile. Reproduction occurs by fragmentation of trichomes and cells divided cross wise to the longitudinal axis of the trichomes (Grover and Pandhol, 1975).

One species recorded i.e. *Planktothrixisothrix*. The main characteristic attributes of genus is free floating and forming water bloom in natural habitat. Numerous aerotopes are present in whole cell. Cells are 7-10 μ m broad and 5.5 μ m long. Motility is slow with peculiar oscillations.

Three species of Pseudophormidiumwere recorded which include P. golenkinianum, P. hollerbachianum and P. purpureum. All species of Pseudophormidium shows "Scytonema" like false branching and they are distinguished on the basis of specific characters. Thallus of P. golenkinianum is dull blue-green in colour, clustered growth settled at the bottom. Trichomes long, entangled, repeatedly pseudobranched, pseudobranching occur mostly in pair rarely single, erect or divergent. Cells are 1-2 broad and 1.5-3 µm long. Reproduction occurs by fragmentation of trichomes with the help of necridia. Thallus of P. hollerbachianum is gelatinous, bright blue-green in colour. In liquid medium growth attached to wall of flask as well as in submerged condition. Trichomes are variously curved, densely entangled, richly pseudobranched which are single or geminate. Cells are 2-4 µm broad and 1.5µm long, slightly constricted at the granulated cross-walls. Sheath is thin. Thallus of P. purpureum is bright blue-green in colour. In liquid flask growth in submerged condition and on solid dish trichomes secrete a lot of mucilage. Trichomes are straight sometimes loosely spiral. Pseudobranched single or geminate. Cells are 1 μ m broad and 5 μ m long. Sheath is thin.

Seven species of *Phormidium* were recorded which include *P. paulsenianum*, *P. pavlovskoense*, *P. okenii*, *P. deflexoides*, *P. inundatum*, *P. retzii* and *P. beggiatoiforme*.

Thallus of *Phormidium paulsenianum* is blackish blue-green. Trichomes straight rarely coiled, apical end slightly attenuated and curved. Cells are 5-7µm broad, and 3-5µm long.

Thallus of Phormidium pavlovskoenseis mucilaginous, trichomes grow uniformly in all direction, fuse to form homogenize circular colonies. Trichomes straight or slightly curved constricted at cross-walls. Cells are greenish-blue in colour, 4µm broad and 1.4µm long. Slow motility is in forward direction. Thallus of Phormidium okeniiis bright blue-green, light sensitive grow only in dim light. Cells are 4-7µm broad and 4-6µm long (terminal cell up to 7-9µm long). Slow movement in forward direction. Thallus of Phormidium deflexoidesis bright blue-green, mucilaginous, growth in liquid medium containing numerous air bubbles. Cells are 4µm broad, 1.5-2.3µm long, isodiametric or slightly shorter than width. Apical cells rounded without calyptra. Thallus of Phormidium inundatum is thin, membranous, growth firmly attached to glass walls and creeps in upward direction. Cells are 4-5µm broad and 4-10µm, usually quadrate or length is more than width. Apical cells are obtuse to acute conical or rounded without calyptra. Sheath is thin. Thallus of Phormidium retzii is thick, compact, tuft. Trichomesun constricted at cross-walls, ends scarcely attenuated. Cells are 8-10µm broad and 6-7µm long, apical cells truncate or obtuse rounded. The thallus of Phormidium beggiatoiforme is cespitose, blackish blue-green, trichomes solitary, long, screw like coiled at the ends. Cells are 5µm broad and 4.5-5 μ m long, apical cells capitate with \pm conical calyptra. Sheath is thin (Kutizing, 1849, Parukutty, 1940; Komarek et al., 2005).

One species recorded i.e. *Porphyro siphonnotarisii*, the thallus of *Porphyro siphonnotarisii* is papery, red brown thick flakes in nature. Filaments long, variously

Table 1 : Showing Taxonomic Description of Arthrospira, Planktothrix, Pseudophormidium, Phormidium
Porphyrosiphon, Microcoleus and Symplocastrum Species of Family Phormidiaceae

Species	Habitat	Trichomes	Constriction	Cell sizeWxL
	/ Thallus	/ Sheath	/ Motility	(in µm) &
				Shape
Arthrospira jenneri	Marble pond.	Long, loosely screw	Not or rarely	5x3.4-4
Plate-A, Fig -1	Thin, blue-green in	like coiled, some	constricted at the	Isodiametric or
Gomont, 1892,	colour, irregularly	time spiral rarely	granulated cross	shorter than
Desikachary, 1959, Grover	spreaded over on	straight. Absent.	walls.	wide.
and Pandhol, 1975,	solid surface.	_	Absent.	
Arthrospira maxima	Temporary small	Long, very loosely	Not constricted or	6.5x4-6
Plate-A, Fig -2	pond.	screw like	slightly constricted	Isodiametric or
Komarek and	Expanded, scattered	coiled, mostly	at the granulated	width is more
Anagnostidis, 2005,	growth from center	straight rarely spiral	cross walls.	than length.
	to periphery forms	Absent.	Very slow	_
	discrete colonies.		movement.	
Planktothrix isothrix	Pond.	Commonly straight	Not constricted or	7-10x5.5
Plate-A, Fig -3	Bloom forming,	rarely slightly	very slightly	Isodiametric or
	free-floating, dark	curved, containing	constricted at the	slightly shorter
Komarek and	blue- green.	numerous gas	inconspicuous	than width,
Anagnostidis, 2005,	-	vacuoles	cross walls.	apical cell
		Absent.	Very slow motile	widely rounded.
			with peculiar	
			oscillation.	
Pseudophormidium	Lowland rice field.	Mostly straight	Constricted at the	1x5
golenkinianum	Bright blue-green,	sometimes loose	cross walls.	Length is more
Plate-A, Fig -4	produce a lot of	spiral,	Absent.	than width,
Komarek and	mucilage over on	pseudobranches		apical cells
Anagnostidis, 2005,	solid dish.	single or geminate.		rounded.
		Very fine.		
Pseudophormidium	Wall of an old	Variously curved	Constricted at the	2-4x1.5
hollerbachianum	building.	and densely	translucent,	Shorter than
Plate-A, Fig -5	Gelatinous and	Entangled.	ungranulated	width.
Komarek and	bright blue-green in	Very fine.	cross-walls.	
Anagnostidis, 2005	colour.		Absent.	
Pseudophormidium	Molluscs shells &	Long, entangled,	Very slightly	1-2x1.5-3
purpureum	on mud.	repeatedly	constricted at the	Longer than
Plate-A, Fig -6	Dull blue-green	pseudobranched.	cross walls.	wide or
Komarek and	clustered growth	Very fine, delicate,	Absent.	isodiametric.
Anagnostidis, 2005	settles at the bottom.	hyaline.		
Phormidium paulsenianum	Lowland rice field.	Mostly straight	Slightly	5-7x3-5
Plate-A, Fig -7	In young blackish -	rarely coiled.	constricted at the	Isodiametric or
Komarek&Anagnostidis,	blue & in old pale	Thin, colourless	cross walls.	shorter than
2005	blue-green.	sheath appears at the	Absent.	broad,
		time of hormogones		highly
		formation.		granulated in
				periphery.

contd.

Phormidium pavlovskoense	Moist soil of rice	Straight or slightly	Slightly	4x1.4
Plate-A, Fig -8	field.	curved.	constricted or	Mostly
Komarek&Anagnostidis,	Mucilaginous, dark	Absent.	unconstricted at	isodiametric
2005	blue-green mat		the cross walls.	rarely less than
	submerged in liquid		Very slow	width.
	flask and coiled		movement in	
	growth of trichomes		forward direction.	
	over on solid dish.			
Phormidium okenii	Epiphytic on	Long, Straight,	Distinctly	4-7x4-6
Plate-A, Fig -9	submerged grass.	irregularly curved.	constricted at the	Mostly
Komarek&Anagnostidis,	Bright blue-green,	Usually absent	granulated or	isodiametric
2005	tuft, attached to	rarely thin, delicate,	ungranulated cross	rarely shorter or
	submersed grass in	colourless.	walls.	longer than
	nature.		Slow movement in	wide.
			forward direction.	
Phormidium deflexoides	Fresh water	Straight or wavy,	Indistinctly	
Plate-A, Fig -10	Bright blue-green,	solitary or	constricted at the	4x1.5-3
Komarek&Anagnostidis,	mucilaginous,	aggregated in group.	granulated cross	
2005	clusters.	Thin, colourless.	walls.	Isodiametric or
			Absent.	slightly shorter
				than wide
Phormidium inundatum	Lowland rice field	Usually straight,	Slightly	4-5x4-10
Plate-A, Fig -11	Thin, membranous,	slightly attenuated	constricted or	Quadrate or
	in liquid dish	at terminal ends	unconstricted at	length is more
Kutzing, Species Algarum,	growth firmly	Thin, colourless	the cross walls.	than width.
1849	attached to glass		Fragmented	
	wall and creeps in		trichomes or	
Gomont, 1892, Geitler,	upward.		hormogones move	
1932,			slowly within	
Komarek&Anagnostidis,			sheath.	
2005				
Phormidium retzii	Attached to stones	Long, isopolar,	Commonly	8-10x6-7
Plate-A, Fig -12	or other object in	more or less	unconstricted	Isodiametric or
	fresh water pond.	straight.	rarely constricted	length is less or
Gomont, 1892,	Thick, compact,	Thin, firm, usually	at the ungranulated	more than width.
Schimidle, 1900b, Forti,	tufty, attached to	diffluent.	cross wall.	
in De Toni, 1907,	base in nature.		Absent.	
Geitler, 1932, Parukutty,				
1940, Srinivasan, 1963,				
Shrivastava, 2000				
Phormidium beggiatoiforme	Moist wall of old	Solitary, long,	Not constricted at	5x4.5-5
	buildings.	usually straight	the granulated	All most
Plate-A, Fig -13	Cespitose to mat	rarely regularly	cross walls.	isodiametric or
Komarek&Anagnostidis,	like, float in	coiled.	Absent.	shorter than
2005,	submerged and also	Thin, colourless		wide.
	attached to wall and	only in culture.		
	bottom.			

contd.

Porphyrosiphon	Upland rice field	Long, variously	Constricted at the	18-20x6-11
notarisii	Papery, forming red	curved, densely	ungranulated cross	Isodiametric or
Plate-A, Fig -14	brown thick flakes	aggregated	walls.	less than the
	on surface,	&entangled.		width.
Schimidle, 1900b,	tomentose.	Firm, thin or thick	Absent.	
Tilden, 1910, Geitler, 1932,		(5µm wide),		
Tiffany, 1952,		colourless but later		
Desikachary, 1959,		brown red to purple		
Starmach, 1966		red.		
Baker&Bold, 1970,				
Tiwari, etal, 2001				
Microcoleus chthonoplastes	Soil of rice field.	Densely aggregated	Constricted at the	3-4x6.7
	Expanded, thin	in fascicles,	granulated cross-	Isodiametric or
Plate-A, Fig -15	strata, in liquid	entangled, parallel	walls.	length more than
	medium air bubble	arranged inside	Absent.	width, apical end
Tilden, 1910,	present in side	sheath.		acute conical.
Geitler, 1932,	biomass, filaments	Colourless or		
Desikachary, 1959,	creep spirally on	yellow, attenuated at		
Starmach, 1966	solid agar surface.	ends, usually open		
		rarely closed at end.		
Tiwari, etal., 2001				
Symplocastrum	Water fall	Isopolar, straight	Constricted at	5-6x5
purpurascens	Cespitose,	rarely contorted.	cross-walls.	Isodiametric,
Plate-A, Fig -16	submerged,	Firm, thick,	Absent.	apical ends
Komarek&Anagnostidis,	Filaments creep	lamellated.		conically
2005	uniformly.			pointed or
				hemispherical.

Figure 1

Figure 2

Figure 3

Figure 5

Figure 6

Figure 7

Figure 9

Figure 10

Figure 8

Figure 11

Figure 12

Indian J.L.Sci. 6 (1) : 27-34, 2017

Figure 13

Figure 14

Figure 15

Figure 16

curved, densely aggregated, entangled. Cells are $18-20\mu m$ broad and $6-11\mu m$ long except terminal cell i.e. $15\mu m$ long. Sheath is thick, lamellated, purple red to reddish brown.

Two genera belonging to sub-family Microcoleoideae include Microcoleus and Symplocastrum. One species recorded i.e. *Microcoleus chthonoplastesis* characterized by two or several trichomes oriented parallel, often spirally and tightly interwoven and enclosed by a common homogeneous sheath. Cells are 3-4µm broad and 6-7.6µm long. Terminal cells are elongated, attenuated or acute conical in shape (Shrivastava 2000, Schimidle, 1900; Gomant, 1892). One species recorded i.e. *Symplocastrum purpurascens* is characterized by thallus expanded, felt like, cespitose. Filaments show dichotomously pseudobranches in upper part while entangled in lower part. Trichomes are isopolar, straight, constricted at cross-walls. Cells are 5-6µm broad and 5µm long, isodiametric in shape. Apical cells are conical or often pointed. Sheath thick, firm, lamellated and reddish to purple red colure. Reproduction frequently occurs through cross-wise cell division and rarely by fragmentation.

ACKNOWLEDGEMENTS

The author is thankful to Dr. D. H. Mishra, Head, Department of Botany, University of Allahabad for guidance. He is also thanks to Dr. H.M.Sukla Microbiologist IFFCO Phoolpur, Dr. O. N. Tiwari, Dr. R. K. Ojha for help in collection and isolation of cyanobacteria.

REFERENCES

- Anagnostidis K. and Komárek J., 1988.Modern approach to the classification system of cyanophytes. 3-Oscillatoriales. Arch. Hydrobiol./Algolog. Stud.50-53:327-472.
- Baker, A. and Bold, H. C., 1970. Phycological studies X. Taxonomic studies in the Oscillatoriaceae. The University of Texas Publication, 7004:105.

- Boone D. R. and R. W. Catenholz, 2001.Berges's Manual of Systematic Bacteriology sringer.Phylum BX Cyanobacteria: 473-599.
- Desikachary, T. V., 1959. Cyanophyta.I.C.A.R., New Delhi: 1-686.
- Drouet F., 1968. Revision of the classification of the Oscillatoriaceae.Monogr. Acad. Nat. Sci., Philadelphia.,15: 1-370.
- Geitler L., 1932. Cyanophyceae. In: Rabenhorst's Kryptogamenflora, 14: 1-1196, Akad. Verlagsges., Leipzig.
- Gomont M., 1892. Monograhie des Oscillatoriees (Nostocaceeshomocystees). Ann. Sci.Nat. Bot. Ser. 7, 15: 263-368, **16**: 91-264.
- Grover, I. S. and Pandhol, R.K., 1975.Algal flora of paddy fields of Ludhiana and its adjacent areas.Phykos, 14: 89-97.
- Hughes, F.O., Gorham, P.R. and Zehnder, A., 1958. Toxicity of unialgal cultures of Microcystis aeruginosa. Can. J. Microbiol. **4**: 225-236.
- Kaushik, B. D., 1987. Laboratory methods for blue-green algae. Associated Publ., Co., New Delhi: 171.
- Komárek, J. and Anagnostidis, K., 2005. Cyanoprokaryota, Oscillatoriales, Süßwasserflora von Mitteleuropa, Elsevier Spektrum Akadesmischer Verlag, **19/2**:1-759
- Kützing, 1849. Speciesalgarum, F. A. Brockhanus, Leipzig., 1-922
- Parukutty P. R., 1940. The Myxophyceae of the Travancore State, India.Proc. Indian Acad. Sci.,B **11** (3): 117-124.

- Rippka R., Deruelles J., Waterburry J. B., Herdman M. and Stanier R.Y., 1979, Genetic assignments, strains histories and properties of Pure cultures of Cyanobacteria. J.General Microbiol. **111**: 1-61.
- Schimidle W., 1900. Uebereinige von Prof. Hansgirg in OstindiengesammelteSussuwasseralgen.Hedwigi a, **39**: 160-190.
- Shrivastava D. K., 2000. Cyanobacteria from paddy fields of Dureg district of Chhattisgarh state. Phykos, **39** (1&2):125-128.
- Stanier, RY., Kunisawa, R., Mandel, M. and Cohen-Bazire, G., 1971, Purification and properties of unicellular blue-green algae. (order Chroococcales) Bacterial.Rev. 35:171-205.
- Starmach K., 1966. Cyanophyata-Sinice Glaukophyta Glaukofity Panstwowe Wydawnitwo Naukowe Warszawa: 807.
- Tiffany L. H. and Britton M. E., 1952. The algae of Illinois. The Univ. of Chicago Press, Chikago, U.S.A.
- Tilden J. E., 1910. Myxophyceae in Minnesota Algae I. Minneapolis.
- Tiwari O. N., Dhar D. W., Tiwari G. L. and Singh P. K., 2001. Non-heterocytous filamentous Cyanobacteria from rice fields of Uttar Pradesh, India.Phykos, 40 (1&2): 61-64.
- Zarrouk C. 1966. Contribution of A l'Etude d'Unecyanophyceae influence de Divers facteure Physioueset Chemiques sur la croissance et la Photosynthese de Spirulinamaxima Setch et Gardner Geitler. Thesis, Paris (provided by Ripley Fox).