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ABSTRACT 

 The WRKY transcription factor family is one of the largest families of transcription factors, primarily known for its role 
in regulating plant responses to biotic and abiotic stress conditions. WRKY transcription factors play a crucial role in mediating 
these responses by participating in plant signal transduction pathways. Numerous studies have highlighted the significance of 
WRKY in plant responses to various environmental challenges such as pathogen attacks, drought, salinity, and temperature 
stress. Often, a single WRKY transcription factor can respond to multiple stress factors and may be involved in several 
regulatory networks. In addition to their role in stress responses, WRKY transcription factors have also been implicated in 
various aspects of plant growth and development, including seed germination, bud and floral differentiation, panicle 
development, and leaf senescence. Therefore, the present review aims to summarize the functions of WRKYs in both biotic and 
abiotic stress responses, as well as in plant development.. 
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Biotic and abiotic stresses are two fundamental 
factors that profoundly influence plant growth, 
development, and survival throughout their life cycle. 
Biotic stresses mainly arise from pathogenic infections 
caused by bacteria, fungi, oomycetes, and viruses. In 
contrast, abiotic stresses encompass a wide range of 
environmental challenges, including drought, heavy 
metal toxicity, cold, irradiation, oxidative stress, and 
heat. The capacity of plants to sense, adapt to, and 
respond to these diverse stresses is vital for maintaining 
their physiological balance and ensuring reproductive 
success (Srivastava et al., 2014; Srivastava et al., 2018). 
Central to this adaptive capability is the regulation of 
gene expression by plant-specific transcription factors 
(TFs), which serve as key modulators of stress-related 
responses. Prominent among these are the WRKY, 
AP2/ERF (APETALA2/Ethylene Responsive Factor), 
and NAC (NAM, ATAF1/2, and CUC1/2) families, all 
of which play essential roles in orchestrating plant 
resilience mechanisms (Jiang et al., 2012a). Among 
them, WRKY transcription factors stand out due to their 
broad involvement in both stress responses and 
developmental processes. 

Extensive research in Arabidopsis and other 
plant species has identified numerous transcription 
factors that have evolved unique plant-specific functions 
(Reichmann and Ratcliff, 2000). In angiosperms, 
transcription factors are classified into 58 families based 
on their DNA-binding domains, with the WRKY gene 
family ranking as the 7th largest and being widely 
distributed across the plant kingdom (Zhang et al., 2011; 
Jin et al., 2014). This widespread distribution 
underscores their evolutionary significance and 

functional diversity. Studies on various WRKY 
transcription factors have revealed their participation in 
multiple physiological and developmental processes, 
including trichome and seed development, seed 
germination, bud and floral differentiation, panicle 
development, and leaf senescence (Johnson et al., 2002; 
Miao et al., 2004; Jiang et al., 2009; Liu et al., 2015; 
Chen et al., 2017; Xiang et al., 2017). These findings 
highlight the versatile nature of WRKYs as central 
regulators not only in stress responses but also in guiding 
key developmental transitions. 

Transcription factors operate by modulating 
gene expression through direct interactions with 
downstream target genes and transcriptional regulators 
(TRs), thereby influencing a wide array of biological 
functions such as growth, development, and activation of 
signaling pathways during stress and defense responses 
(Nath et al., 2019). Among the many TF families 
reported to regulate genes involved in plant defense 
mechanisms, several, including ERF, MYB, bHLH, 
bZIP, and NAC, are particularly prominent for their roles 
in mediating responses to wounding, anaerobic stress, 
pathogen infection, and UV radiation (Singh et al., 
2002). Notably, many of these families are unique to 
plants and have expanded significantly, reflecting the 
complex regulatory demands imposed by environmental 
and biotic challenges. Within these extensive regulatory 
networks, WRKY proteins are especially noteworthy. 
They function as indispensable components of gene 
regulatory systems, orchestrating plant responses to 
various environmental stresses as well as developmental 
processes such as seed germination, leaf senescence, 
flowering, and root development (Geilen et al., 2017; Li 
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et al., 2020; Li et al., 2017; Gu et al., 2019; Zhang et al., 
2016; Besseau et al., 2012; Li et al., 2016; Grunewald et 
al., 2012). Their central role in modulating diverse 
biological processes positions WRKY transcription 
factors as crucial elements in plant biology. In this 
context, the present review aims to provide a 
comprehensive synthesis of current knowledge on the 
functional roles of WRKY transcription factors, 
particularly focusing on their involvement in regulating 
plant responses to biotic and abiotic stresses, as well as 
their contributions to developmental processes. 

STRUCTURE AND CLASSIFICATION OF WRKY 
TRANSCRIPTION FACTORS: AN INSIGHT 

WRKY transcription factors represent a unique 
and expansive family of plant-specific proteins, with 74 
members identified in Arabidopsis, 81 in tomato, and 
109 in rice. The family derives its name from a highly 
conserved amino acid sequence, WRKYGQK, located 
within a 60-amino-acid-long domain typically found at 
the N-terminus of these proteins. In addition to this 
signature WRKY domain, these proteins also feature a 
zinc finger-like motif at the C-terminus, which is 
essential for their DNA-binding function (Eulgem and 
Somssich, 2007; Ross et al., 2007; Huang et al., 2012).  

WRKY proteins may contain either one or two 
WRKY domains, and based on the number of domains 
as well as the specific type of zinc-finger motif they 
possess, they are classified into three major groups 
(Eulgem et al., 2000; Rushton et al., 2010; Bakshi & 
Oelmüller, 2014). Group I proteins are characterized by 
the presence of two WRKY domains and a C2H2-type 
(Cys₂-His₂) zinc-finger motif. In contrast, Groups II and 
III contain only a single WRKY domain. Group II 
proteins also have a C2H2-type zinc-finger motif, 
whereas Group III proteins are distinguished by a C2HC-
type (Cys₂-His/Cys) zinc-finger motif. Furthermore, 
Group II WRKY transcription factors exhibit additional 
structural diversity and are subdivided into five 
subgroups: II-a, II-b, II-c, II-d, and II-e. This 
classification is based on the presence of specific 
conserved structural motifs beyond the core WRKY 
domain, reflecting the functional specialization within 
this family (Ülker & Somssich, 2004; Rushton et al., 
2010; Bakshi & Oelmüller, 2014). 

WRKYS PLAY ROLE IN PLANT GROWTH AND 
DEVELOPMENT 

WRKY transcription factors play vital roles in 
various aspects of plant growth and development, 
including seed germination, ovule formation, flowering, 
and leaf senescence. In Arabidopsis, mutants of both 
AtWRKY2 (Jiang and Yu, 2009) and AtWRKY43 (Geilen 

et al., 2017) exhibited reduced seed germination in the 
presence of abscisic acid (ABA). Similarly, 
overexpression of OsWRKY17 in Nicotiana benthamiana 
led to decreased germination rates under NaCl and 
mannitol treatment (Yan et al., 2014). In contrast, 
increased germination was observed in overexpression 
lines of GhWRKY34 (Zhou et al., 2015) and OsWRKY45 
(Qiu et al., 2009) in Arabidopsis. Likewise, 
overexpression of TaWRKY44 in tobacco (Wang et al., 
2015) and TaWRKY46 in Arabidopsis (Li et al., 2020) 
also enhanced seed germination under mannitol 
treatment and drought conditions. However, 
overexpression of OsWRKY72 in Arabidopsis resulted in 
delayed germination (Song et al., 2010). 

Beyond seed germination, numerous WRKY 
transcription factors have been reported to regulate 
flowering and senescence. For instance, AtWRKY75 (Li 
et al., 2012), AtWRKY26 (Li et al., 2017), GhWRKY27, 
GhWRKY91 (Gu et al., 2019), OsWRKY23 (Jing et al., 
2009), OsWRKY42 (Han et al., 2014), and TaWRKY7 
(Zhang et al., 2016) act as positive regulators of 
senescence, whereas AtWRKY54 and AtWRKY70 act as 
negative regulators (Besseau et al., 2012). In 
Arabidopsis, AtWRKY12 and AtWRKY13 play opposite 
roles in flowering: AtWRKY12 promotes flowering under 
short-day conditions, while AtWRKY13 delays it (Li et 
al., 2016). Another WRKY gene, WRKY71, has been 
shown to promote flowering by activating LFY and FT 
genes (Yu et al., 2016). 

Although WRKYs are well studied in several 
developmental processes, fewer studies have focused on 
their roles in root development. In Arabidopsis, 
AtWRKY75 is induced under phosphate (Pi) deficiency, 
and its suppression results in increased lateral root 
number and length (Devaiah et al., 2007). Conversely, 
suppression of AtWRKY46 reduces lateral root formation 
under osmotic and salt stress (Ding et al., 2015). 
AtWRKY23 regulates root development and flavonol 
biosynthesis (Grunewald et al., 2012). Overexpression of 
a GhWRKY6-like gene in Arabidopsis enhanced 
germination and root length under salt, ABA, and 
mannitol stress (Ullah et al., 2017). In rice, OsWRKY74 
was shown to enhance root and shoot biomass and 
improve Pi stress tolerance (Dai et al., 2016). 
Overexpression of GhWRKY31 in rice increased 
resistance against Magnaporthe grisea infection but 
reduced lateral root elongation and formation (Zhang et 
al., 2007). Additionally, TaWRKY2 was reported to 
promote lateral root formation in transgenic wheat by 
downregulating the ethylene biosynthesis gene ACS (Hu 
et al., 2018). 
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ROLE OF WRKYS TFs IN ABIOTIC STRESS 
WRKY proteins have diverse roles in mediating 

plant responses to both abiotic and biotic stresses. 
Abiotic stresses such as drought, radiation, salinity, and 
cold trigger the activation of several WRKY proteins that 
contribute to resistance mechanisms. Among these, 
drought and salt stress are considered two of the most 
critical abiotic factors affecting plant growth and 
productivity. 

In Arabidopsis, mutants of AtWRKY1 (Qiao et 
al., 2016) and AtWRKY63 (Ren et al., 2010) exhibited 
reduced drought tolerance compared to wild-type plants, 
while mutants of AtWRKY46, AtWRKY54, and 
AtWRKY70 showed enhanced drought tolerance (Chen et 
al., 2017). In other plant species, overexpression of 
GhWRKY41 (Chu et al., 2015), OsWRKY30 (Shen et al., 
2012), and OsWRKY47 (Raineri et al., 2015) in Nicotiana 
benthamiana and rice, respectively, improved drought 
tolerance. Similarly, overexpression of wheat TaWRKY2 
and TaWRKY19 (Niu et al., 2012), as well as cotton 
GhWRKY91 (Gu et al., 2019), enhanced drought 
tolerance in transgenic Arabidopsis lines. 

AtWRKY8 was found to be strongly expressed 
in roots and upregulated under salt stress (Hu et al., 
2013). In contrast, rice plants overexpressing 
OsWRKY30 (Scarpeci et al., 2013) and OsWRKY72 (Yu 
et al., 2010) were more susceptible to salt stress. Recent 
studies have also shown that overexpression of 
PcWRKY33 decreased salt tolerance in Arabidopsis, as 
transgenic plants exhibited impaired Na⁺/K⁺ homeostasis 
and reduced activity of ROS-scavenging enzymes (Yin 
et al., 2024). 

Another transcription factor, OsWRKY63, 
negatively regulates cold tolerance in rice by suppressing 
the expression of OsWRKY76 (Zhang et al., 2022). 
SlWRKY57 has been identified as a negative regulator of 
salt stress in tomato by repressing the transcription of 
salt-responsive genes such as SlRD29B, SlDREB2, and 
SlSOS1 (Ma et al., 2023). In soybean, overexpression of 
GmWRKY17 enhanced drought tolerance by activating 
the expression of GmDREB1D, a drought-inducible gene 
(Liu et al., 2023). Similarly, overexpression of 
MdWRKY70L in Nicotiana tabacum reduced the 
accumulation of H₂O₂ and O₂⁻, thereby enhancing 
drought tolerance in transgenic plants (Qin et al., 2022). 

Interaction between WRKY TFs and Associated Abiotic 
Stress Factors  

In the abscisic acid (ABA)-dependent stress 
response, mitogen-activated protein kinases (MAPKs) 
play crucial roles in transducing downstream signals, 
whereas in biotic stress responses, wound-induced 

protein kinase (WIPK) and salicylic acid (SA)-induced 
protein kinase (SIPK) are key components (Li et al., 
2011). Some MAPKs are activated under both biotic and 
abiotic stress conditions; for instance, in Arabidopsis, 
MPK3, MPK6, and MPK4 are involved in both pathways 
(Danquah et al., 2014). In rice, WRKY30 enhances 
drought tolerance by interacting with MAPK cascades. A 
point mutation at the serine (Ser) residue in the Ser-Pro 
site of WRKY30 leads to a drought-sensitive phenotype 
(Shen et al., 2012) (Figure 1). These results suggest the 
importance of MAPK-mediated phosphorylation in the 
drought tolerance activity of OsWRKY30. 
Overexpression of AtWRKY34, a pollen-specific 
transcription factor, under its native promoter led to the 
phosphorylation of the WRKY34 protein by MPK6 and 
MPK3 (Guan et al., 2014). In vivo studies further 
demonstrated that mutations at the phosphorylation site 
of WRKY34 impaired its function (Guan et al., 2014). 
These signaling studies provide valuable insights that 
could contribute to the development of a variety of stress-
tolerant transgenic crops. 

 

 
Figure 1. MAPK pathway induces OsWRKY30 
transcription factors activity during drought stress. 
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ROLE OF WRKY TFs IN BIOTIC STRESS 
In Arabidopsis, AtWRKY28 and AtWRKY75 have 

been shown to confer resistance against oxalic acid and 
fungal infections by regulating the jasmonic acid 
(JA)/ethylene (ET) signaling pathway (Chen et al., 
2013). The atwrky33 mutant exhibited heightened 
susceptibility to Botrytis cinerea, which was associated 
with salicylic acid (SA)-mediated repression of the JA 
pathway (Birkenbihl et al., 2012). Similarly, 
overexpression of AtWRKY61 in Arabidopsis (Gao et al., 
2016) and GhWRKY15 in tobacco (Yu et al., 2012) 
enhanced resistance to viral infections. In contrast, the 
rice genes OsWRKY62 and OsWRKY76 function as 
negative regulators of biotic stress responses. Double 
mutants of these genes showed increased susceptibility 
to Magnaporthe oryzae and Xanthomonas oryzae pv. 
oryzae (Xoo) (Liu et al., 2016), whereas overexpression 
of OsWRKY71 increased resistance to Xoo in rice (Liu et 
al., 2007). GhWRKY70, similar to OsWRKY62 and 
OsWRKY76, also negatively regulated tolerance to 
Verticillium dahliae in transgenic Arabidopsis by 
upregulating SA-associated genes and downregulating 
JA-associated genes (Xiong et al., 2019). AtWRKY48 has 
also been reported to negatively affect basal resistance to 
virulent Pseudomonas syringae (Xing et al., 2008). More 
recently, WRKY genes in potato, such as ScWRKY023 
and ScWRKY045, were found to be induced in response 
to wounding, while during viral infection, ScWRKY016 
and ScWRKY045 were downregulated (Villano et al., 
2020). 

One well-characterized example of WRKY 
transcription factor involvement in biotic stress 
responses is AtWRKY33 in Arabidopsis (Figure 2). 
AtWRKY33 plays a pivotal role in mediating plant 
defense mechanisms during pathogen attack. Under 
normal, non-infected conditions, AtWRKY33 forms a 
regulatory complex with mitogen-activated protein 
kinase 4 (MPK4) via its interaction with the substrate 
MKS1, contributing to the regulation of pattern-triggered 
immunity (PTI) (Qiu et al., 2008). However, upon 
infection with the bacterial pathogen Pseudomonas 
syringae, MKS1 undergoes phosphorylation, triggering 
the disassembly of the complex. This phosphorylation 
event leads to the release of both MKS1 and AtWRKY33. 
Once released, AtWRKY33 translocates to the nucleus, 
where it activates the transcription of PAD3 (Phytoalexin 
Deficient 3), a gene encoding an enzyme crucial for the 
biosynthesis of antimicrobial phytoalexins (Qiu et al., 
2008). Through this mechanism, AtWRKY33 directly 
contributes to strengthening the plant’s defense response 
against pathogenic invasion. 

 

 

Figure 2. AtWRKY33 roles during pathogen infection 
 
CONCLUSIONS AND FUTURE PROSPECTS 

As one of the largest and most functionally 
diverse transcription factor families, WRKY 
transcription factors play indispensable roles in 
regulating both plant development and stress responses. 
Over the years, accumulating evidence has demonstrated 
that WRKY proteins are not limited to developmental 
processes but are also integral components of complex 
regulatory networks that modulate plant responses to a 
wide range of biotic and abiotic stresses. These include 
processes such as seed germination, leaf senescence, 
flowering, and root development. Despite extensive 
studies, the precise molecular mechanisms and modes of 
action through which WRKY transcription factors exert 
their regulatory functions remain only partially 
understood. Recent advances in genomic and 
transcriptomic technologies have significantly expanded 
our ability to identify and characterize WRKY gene 
families across diverse plant species, offering valuable 
insights into their functional roles and mechanisms of 
action. In particular, elucidating their downstream target 
genes, interaction partners, and self-regulatory feedback 
loops is essential for a comprehensive understanding of 
the transcriptional networks governing plant stress 
responses and development. 
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Looking ahead, future research should also 
address the influence of epigenetic modifications and 
non-coding RNAs in regulating WRKY transcription 
factors. Integrating these layers of regulation could 
provide a more holistic view of how WRKYs function 
under varying environmental conditions. Such insights 
hold considerable potential for the development of stress-
resilient crops, ultimately contributing to improved 
agricultural productivity and sustainability. 
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